Irenilza De Alencar Nääs | Object Detection and Recognition | Women Researcher Award

Prof. Irenilza De Alencar Nääs | Object Detection and Recognition | Women Researcher Award

Professor | Universidade Paulista | Brazil

Prof. Irenilza de Alencar Nääs is a leading researcher at Universidade Paulista, São Paulo, Brazil, specializing in precision livestock farming, agricultural engineering, and AI-driven animal welfare assessment. She has authored over 339 peer-reviewed publications with more than 3,311 citations h-index 32, reflecting strong international impact and extensive collaboration with more than 400 co-authors worldwide. Her recent work integrates thermography, computer vision (YOLOv8), and machine learning to improve broiler welfare, postharvest quality, and occupational health in agri-food systems. Dr. Nääs’s research significantly advances sustainable agriculture and data-driven decision-making for global food security.

Citation Metrics (Scopus)

4000

3000

2000

1000

0

Citations
3,311

Documents
339

h-index
32

🟦 Citations 🟥 Documents 🟩 h-index

View Scopus Profile
           View ORCID Profile
       View Google Scholar Profile

Featured Publications


Princípios de conforto térmico na produção animal .

– Ícone Editora.. (1989). Cited By : 251

Infrared thermal image for assessing animal health and welfare.

-Journal of Animal Behaviour and Biometeorology. (2014). Cited By: 143

Impact of lameness on broiler well-being.

– Journal of Applied Poultry Research. (2009). Cited By: 116

Real time computer stress monitoring of piglets using vocalization analysis.

– Computers and Electronics in Agriculture. (2025). Cited By: 108

Xinrong Hu | Object Detection and Recognition | Women Researcher Award

Prof. Xinrong Hu | Object Detection and Recognition | Women Researcher Award

Dean of Computer Science and Artificial Intelligence | Wuhan Textile University | China

Prof. Xinrong Hu is a distinguished researcher and academic leader in computer vision, natural language processing, virtual reality, and machine learning. She serves as Dean of the School of Computer and Artificial Intelligence at Wuhan Textile University and is a doctoral supervisor, leading an innovative research team at the Hubei Provincial Engineering Technology Research Center for Garment Informatization. She holds a Ph.D. and has extensive experience in guiding research projects, including over 30 funded initiatives, some with national and international significance. Her research interests focus on advancing artificial intelligence applications in real-world scenarios, combining theoretical innovation with practical solutions. She has authored more than 100 academic papers, edited six textbooks, translated a book, and holds 26 invention patents, demonstrating her strong research skills and contribution to knowledge dissemination. Prof. Hu has been recognized with multiple awards and honors, including provincial and ministerial-level scientific research awards, teaching achievement awards, and prestigious titles such as Hubei Provincial Distinguished Teacher and recipient of the Special Government Allowance from the State Council. Her professional engagement includes leadership in academic communities, mentorship of young researchers, and active participation in advancing the field of AI through both education and research initiatives. Her comprehensive expertise, innovative contributions, and dedication to fostering academic excellence make her a leading figure in her field. Her research impact is reflected in 1,044 citations, 209 documents, and an h-index of 16.

Profiles: Scopus | ResearchGate 

Featured Publications

  1. Hu, X., et al. (2025). CDPMF-DDA: Contrastive deep probabilistic matrix factorization for drug-disease association prediction. BMC Bioinformatics.

  2. Hu, X., et al. (2025). Source-free cross-modality medical image synthesis with diffusion priors. Journal of King Saud University – Computer and Information Sciences.

  3. Hu, X., et al. (2025). TADUFMA: Transformer-based adaptive denoising and unified feature modeling for multi-condition anomaly detection in computerized flat knitting machines. Measurement Science and Technology.

  4. Hu, X., et al. (2025). ViT-BF: Vision transformer with border-aware features for visual tracking. Visual Computer.

  5. Hu, X., et al. (2025). Adaptive debiasing learning for drug repositioning. Journal of Biomedical Informatics.