Tao Chen | Object Detection and Recognition | Research Excellence Award

Dr. Tao Chen | Object Detection and Recognition | Research Excellence Award

Professor | Fudan University | China

Dr. Tao Chen is a leading researcher at Fudan University, specializing in deep learning and computer vision, with a focus on human motion understanding, 3D shape generation, and semantic segmentation. He has contributed to over 249 high-impact publications in top-tier venues including CVPR, NeurIPS, and IEEE Transactions, accumulating more than 6294 citations. His work integrates advanced neural architectures, motion diffusion, and cross-domain adaptation techniques, often in collaboration with international researchers such as G. Yu and W. Liu. Dr. Chen’s research has significant societal impact, advancing intelligent systems for medical imaging, autonomous perception, and interactive 3D applications, bridging fundamental AI research with practical real-world solutions.

Citation Metrics (Google Scholar)

4000

3000

2000

1000

0

Citations
6294

Documents
249

h-index
41

🟦 Citations 🟥 Documents 🟩 h-index

View Google Scholar Profile
           View Research Gate Profile

Featured Publications


Executing your commands via motion diffusion in latent space.

– In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . (2023). Cited By : 580

TopFormer: Token pyramid transformer for mobile semantic segmentation.

-In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). (2022). Cited By: 388

b‑DARTS: Beta‑decay regularization for differentiable architecture search.

– In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). (2022). Cited By: 194

LL3DA: Visual interactive instruction tuning for omni‑3D understanding, reasoning, and planning.

– In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). (2024). Cited By: 178

Xinrong Hu | Object Detection and Recognition | Women Researcher Award

Prof. Xinrong Hu | Object Detection and Recognition | Women Researcher Award

Dean of Computer Science and Artificial Intelligence | Wuhan Textile University | China

Prof. Xinrong Hu is a distinguished researcher and academic leader in computer vision, natural language processing, virtual reality, and machine learning. She serves as Dean of the School of Computer and Artificial Intelligence at Wuhan Textile University and is a doctoral supervisor, leading an innovative research team at the Hubei Provincial Engineering Technology Research Center for Garment Informatization. She holds a Ph.D. and has extensive experience in guiding research projects, including over 30 funded initiatives, some with national and international significance. Her research interests focus on advancing artificial intelligence applications in real-world scenarios, combining theoretical innovation with practical solutions. She has authored more than 100 academic papers, edited six textbooks, translated a book, and holds 26 invention patents, demonstrating her strong research skills and contribution to knowledge dissemination. Prof. Hu has been recognized with multiple awards and honors, including provincial and ministerial-level scientific research awards, teaching achievement awards, and prestigious titles such as Hubei Provincial Distinguished Teacher and recipient of the Special Government Allowance from the State Council. Her professional engagement includes leadership in academic communities, mentorship of young researchers, and active participation in advancing the field of AI through both education and research initiatives. Her comprehensive expertise, innovative contributions, and dedication to fostering academic excellence make her a leading figure in her field. Her research impact is reflected in 1,044 citations, 209 documents, and an h-index of 16.

Profiles: Scopus | ResearchGate 

Featured Publications

  1. Hu, X., et al. (2025). CDPMF-DDA: Contrastive deep probabilistic matrix factorization for drug-disease association prediction. BMC Bioinformatics.

  2. Hu, X., et al. (2025). Source-free cross-modality medical image synthesis with diffusion priors. Journal of King Saud University – Computer and Information Sciences.

  3. Hu, X., et al. (2025). TADUFMA: Transformer-based adaptive denoising and unified feature modeling for multi-condition anomaly detection in computerized flat knitting machines. Measurement Science and Technology.

  4. Hu, X., et al. (2025). ViT-BF: Vision transformer with border-aware features for visual tracking. Visual Computer.

  5. Hu, X., et al. (2025). Adaptive debiasing learning for drug repositioning. Journal of Biomedical Informatics.