Nisharg Nargund | Document Image Analysis | Young Researcher Award

Mr. Nisharg Nargund | Document Image Analysis | Young Researcher Award

Undergrad Researcher | Kalinga Institute of Industrial Technology | India

Mr. Nisharg Nargund is an emerging researcher in artificial intelligence and machine learning at the Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India. His research focuses on large language models, retrieval-augmented generation, transformer architectures, and multi-agent AI systems. He has authored Ten scholarly and professional publications, with 2 Scopus-indexed documents receiving 19 citations and an h-index of 1. His work has been presented at leading international conferences, earning Best Paper and Best Poster awards. Through academic collaborations, industry internships, and open-source projects, his research contributes to scalable, ethical, and societally impactful AI solutions in education, language technology, and industry.

 

Citation Metrics (Scopus)

30

20

10

0

Citations
19

Documents
2

h-index
1

🟦 Citations 🟥 Documents 🟩 h-index

View Scopus Profile
           View Google Scholar Profile

Featured Publications


Deep learning in Industry 4.0: Transforming manufacturing through data-driven innovation.

– In Distributed Computing and Intelligent Technology: 20th International Conference, ICDCIT 2024, Bhubaneswar, India, January 17–20, 2024, Proceedings. (2024). Cited By : 31

Conversational text extraction with large language models using retrieval-augmented systems.

– In Proceedings of the 6th International Conference on Computational Intelligence and Networks . (2025). Cited By : 5

Innovative fusion of LSTM and Bi-GRU networks for enhanced hate speech detection in social media.

– International Research Journal of Modernization in Engineering Technology and Science (IRJMETS). (2024). 

Tao Chen | Object Detection and Recognition | Research Excellence Award

Dr. Tao Chen | Object Detection and Recognition | Research Excellence Award

Professor | Fudan University | China

Dr. Tao Chen is a leading researcher at Fudan University, specializing in deep learning and computer vision, with a focus on human motion understanding, 3D shape generation, and semantic segmentation. He has contributed to over 249 high-impact publications in top-tier venues including CVPR, NeurIPS, and IEEE Transactions, accumulating more than 6294 citations. His work integrates advanced neural architectures, motion diffusion, and cross-domain adaptation techniques, often in collaboration with international researchers such as G. Yu and W. Liu. Dr. Chen’s research has significant societal impact, advancing intelligent systems for medical imaging, autonomous perception, and interactive 3D applications, bridging fundamental AI research with practical real-world solutions.

Citation Metrics (Google Scholar)

4000

3000

2000

1000

0

Citations
6294

Documents
249

h-index
41

🟦 Citations 🟥 Documents 🟩 h-index

View Google Scholar Profile
           View Research Gate Profile

Featured Publications


Executing your commands via motion diffusion in latent space.

– In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . (2023). Cited By : 580

TopFormer: Token pyramid transformer for mobile semantic segmentation.

-In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). (2022). Cited By: 388

b‑DARTS: Beta‑decay regularization for differentiable architecture search.

– In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). (2022). Cited By: 194

LL3DA: Visual interactive instruction tuning for omni‑3D understanding, reasoning, and planning.

– In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). (2024). Cited By: 178

Naourez Benhadj | Deep Learning | Excellence in Research

Prof. Naourez Benhadj | Deep Learning | Excellence in Research

Associate Professor | Ecole Nationale d’Ingénieurs de Sfax | Tunisian

Dr. Naourez Benhadj is a researcher at the Ecole Nationale d’Ingénieurs de Sfax (ENIS), Tunisia, specializing in electric machines, PMSM design, hybrid/electric vehicle energy management, and intelligent optimization techniques. With 32 scientific publications, 243 citations, and an h-index of 9, he has contributed significantly to fault detection, finite-element modeling, and advanced optimization algorithms, including recent work on transformer-based solar power prediction and PMSM design using chaotic PSO. Collaborating with over 30 international co-authors, his research supports sustainable mobility, smart energy systems, and high-efficiency electric transportation, fostering technological advancement and environmental impact on a global scale.

 

Citation Metrics (Scopus)

400

300

200

100

0

Citations
243

Documents
32

h-index
9

🟦 Citations 🟥 Documents 🟩 h-index

View Scopus Profile
             View Google Scholar Profile
             View ORCID Profile

Featured Publications


Comparison of fuel consumption and emissions of two hybrid electric vehicle configurations.

-International Conference on Sciences and Techniques of Automatic Control and Computer Engineering. (2018) Cited By: 4

Design simulation and realization of solar battery charge controller using Arduino Uno..

-International Conference on Sciences and Techniques of Automatic Control and Computer Engineering . (2017) Cited By: 21

Torque ripple and harmonic density current study in induction motor: Two rotor slot shapes.

– International Review on Modelling and Simulations.(2007). Cited By: 5

Thermal modeling of permanent magnet motor with finite element method.

– International Conference on Sciences and Techniques of Automatic Control and Computer Engineering. (2014). Cited By: 5

Felix Lankester | Face Recognition and Analysis | Research Impact Award

Prof. Dr. Felix Lankester | Face Recognition and Analysis | Research Impact Award

Professor | Washington State University | United Kingdom

Dr Felix Lankester is an accomplished veterinary scientist with extensive experience in global health, wildlife conservation, and zoonotic disease research. He earned his PhD from the University of Glasgow, where his research focused on the impact and control of malignant catarrhal fever in Tanzania. He also holds an MSc in Wild Animal Health from the University of London and a Bachelor of Veterinary Science from the University of Liverpool. Dr Lankester serves as a Clinical Associate Professor at the Paul G. Allen School for Global Health, Washington State University, and previously worked as Director of Tanzanian Programs at the Lincoln Park Zoological Society and Country Director for the Pandrillus Foundation in Cameroon. His professional journey also includes roles as Project Director and Head Veterinarian at the Limbe Wildlife Centre, wildlife consultant in Kenya, and veterinary surgeon in the UK and Borneo. His research interests focus on zoonotic disease transmission, particularly rabies and other infectious diseases affecting marginalized communities in East Africa, as well as emerging pathogens with pandemic potential through his leadership in the DEEP VZN project. Dr Lankester has received recognition for his contributions to One Health, disease control, and wildlife health education. His research skills encompass field epidemiology, infectious disease modeling, surveillance design, and interdisciplinary collaboration across human and animal health systems. He continues to mentor young researchers and contribute to the scientific community through publications and international teaching engagements. His work has achieved 2,497 citations by 72 documents and an h-index of 25.

Profiles: Scopus | ORCID

Featured Publications

1.Kibona, T., Buza, J., Shirima, G., Lankester, F., Ngongolo, K., Hughes, E., Cleaveland, S., & Allan, K. J. (2022). The prevalence and determinants of Taenia multiceps infection (cerebral coenurosis) in small ruminants in Africa: A systematic review. Parasitologia.

2.Lankester, F., Kibona, T. J., Allan, K. J., de Glanville, W., Buza, J. J., Katzer, F., Halliday, J. E., Mmbaga, B. T., Wheelhouse, N., Innes, E. A., et al. (2024). Livestock abortion surveillance in Tanzania reveals disease priorities and importance of timely collection of vaginal swab samples for attribution. eLife.

3.Lankester, F., Lugelo, A., Changalucha, J., Anderson, D., Duamor, C. T., Czupryna, A., Lushasi, K., Ferguson, E., Swai, E. S., Nonga, H., et al. (2024). A randomized controlled trial of the effectiveness of a community-based rabies vaccination strategy. Preprint.

4.Kibona, T., Buza, J., Shirima, G., Lankester, F., Nzalawahe, J., Lukambagire, A.-H., Kreppel, K., Hughes, E., Allan, K. J., & Cleaveland, S. (2022). Taenia multiceps in northern Tanzania: An important but preventable disease problem in pastoral and agropastoral farming systems. Parasitologia.

5.Lugelo, A., Hampson, K., Ferguson, E. A., Czupryna, A., Bigambo, M., Duamor, C. T., Kazwala, R., Johnson, P. C. D., & Lankester, F. (2022). Development of dog vaccination strategies to maintain herd immunity against rabies. Viruses.

Madhuri Rao | Machine Learning | Best Researcher Award

Dr. Madhuri Rao | Machine Learning | Best Researcher Award

Senior Assistant Professor | MIT World Peace University | India

Dr. Madhuri Rao is a dedicated researcher and academic in computer science with expertise in wireless sensor networks, Internet of Things, artificial intelligence, blockchain, and cybersecurity, with her current work focusing on deep learning, cloud security, and healthcare applications. She earned her Ph.D. in Computer Science and Engineering from Biju Patnaik University of Technology, where her research emphasized energy-efficient object tracking in wireless sensor networks. Over her career, she has gained extensive professional experience as a faculty member, academic coordinator, research supervisor, and editorial board member, contributing significantly to both teaching and research. She has authored and co-authored numerous publications in reputed journals and conferences, including IEEE, Springer, Elsevier, and Scopus-indexed platforms, along with patents and book chapters that highlight her innovative approach. Her research interests span interdisciplinary applications of advanced technologies to address challenges in security, healthcare, and sustainability, with ongoing involvement in collaborative projects and international initiatives. She has received recognition through awards such as best paper honors and a best research scholar award, underscoring her contributions to the academic community. Her research skills include problem-solving, experimental design, data analysis, and guiding students at undergraduate, postgraduate, and doctoral levels, coupled with active roles as session chair, track chair, and guest lecturer in international conferences. She is also a life member of professional societies and holds certifications that strengthen her academic profile. Her impactful contributions are reflected in 116 citations and an h-index of 7.

Profile: Google Scholar | ORCID | ResearchGate | LinkedIn

Featured Publications

  1. Rao, M., & Kamila, N. K. (2021). Cat swarm optimization based autonomous recovery from network partitioning in heterogeneous underwater wireless sensor network. International Journal of System Assurance Engineering and Management, 1–15.

  2. Rao, M., Kamila, N. K., & Kumar, K. V. (2016). Underwater wireless sensor network for tracking ships approaching harbor. 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), 1098–1102. IEEE.
  3. Rao, M., & Kamila, N. K. (2018). Spider monkey optimisation based energy efficient clustering in heterogeneous underwater wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 29(1–2), 50–63.

  4. Chaudhury, P., Rao, M., & Kumar, K. V. (2009). Symbol based concatenation approach for text to speech system for Hindi using vowel classification technique. 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 1393–1396. IEEE.

  5. Kumar, K. V., Kumari, P., Rao, M., & Mohapatra, D. P. (2022). Metaheuristic feature selection for software fault prediction. Journal of Information and Optimization Sciences, 43(5), 1013–1020.

Ahmad Reza Naghsh Nilchi | Deep Learning | Best Researcher Award

Prof. Ahmad Reza Naghsh Nilchi | Deep Learning | Best Researcher Award

Faculty Member | University of Isfahan | Iran

Prof. Ahmad Reza Naghsh-Nilchi is a distinguished researcher in computer vision, artificial intelligence, and medical image processing with a strong academic and professional background. He completed his PhD in Electrical and Computer Engineering at Michigan State University, where he specialized in digital image processing, and has since built an influential career in both academia and research. Over the years, he has served in multiple leadership positions including department chair, dean of research, and head of research laboratories, while also supervising numerous PhD and master’s students in advanced AI and imaging topics. His professional experience extends internationally through collaborations with leading institutions such as UC Irvine, University of Toronto, York University, and University of Ireland, contributing significantly to global research initiatives. His research interests span robust deep learning, adversarial defense, trustworthy AI, multimodal action recognition, image captioning, retinal analysis, and robot-camera pose estimation, reflecting both theoretical innovation and practical applications. He has published more than 70 papers in prestigious journals and conferences indexed by IEEE and Scopus, and his work has received more than 2,200 citations. His excellence has been recognized through multiple honors, including awards as University Researcher of the Year and Industrial Researcher of the Year. He possesses advanced research skills in AI model development, medical imaging, digital signal processing, and multimodal data analysis, complemented by editorial roles, conference organization, and active memberships in professional associations such as IEEE and ACM. His career demonstrates a commitment to advancing science, mentoring the next generation, and fostering impactful interdisciplinary collaborations. His Scopus output reflects international impact, with 1,319 citations by 1,214 documents, 65 published documents, and an h-index of 21.

Profile: Google Scholar | Scopus Profile | ORCID Profile

Featured Publications

Fathi, A., & Naghsh-Nilchi, A. R. (2012). Noise tolerant local binary pattern operator for efficient texture analysis. Pattern Recognition Letters, 33(9), 1093–1100.

Fathi, A., & Naghsh-Nilchi, A. R. (2012). Efficient image denoising method based on a new adaptive wavelet packet thresholding function. IEEE Transactions on Image Processing, 21(9), 3981–3990.

Fathi, A., & Naghsh-Nilchi, A. R. (2013). Automatic wavelet-based retinal blood vessels segmentation and vessel diameter estimation. Biomedical Signal Processing and Control, 8(1), 71–80.

Amirgholipour, S. K., & Ahmad, R. (2009). Robust digital image watermarking based on joint DWT-DCT. International Journal of Digital Content Technology and its Applications, 3(2), 42–48.*

Kasmani, S. A., & Naghsh-Nilchi, A. (2008). A new robust digital image watermarking technique based on joint DWT-DCT transformation. In 2008 Third International Conference on Convergence and Hybrid Information Technology (pp. 539–544). IEEE.

Minh-Son Dao | Deep Learning | Best Researcher Award

Dr. Minh-Son Dao | Deep Learning | Best Researcher Award

Researcher at The National Institute of Information and Communications Technology (NICT), Japan.

Dr. Minh-Son DAO is a distinguished Senior Researcher and Research Manager at the Big Data Integration Research Center, National Institute of Information and Communications Technology (NICT), Japan. With over two decades of research and leadership experience across academia and government, he leads cutting-edge initiatives in artificial intelligence, big data analytics, and smart IoT systems. He has played a pivotal role in Japan’s Society 5.0 vision through projects like MMCRAI and collaborative smart-city platforms. Dr. DAO is also a committed educator, serving as a thesis supervisor and adjunct lecturer across multiple international universities. His work has earned him numerous accolades, including multiple Best Challenge Awards, national recognitions, and research excellence honors. With over 100 peer-reviewed publications and international partnerships spanning Europe and Asia, he continues to bridge academic rigor with real-world impact. His current focus lies in multimodal AI frameworks and data-driven societal innovation.

Professional Profile

Suitability For Best Researcher Award – Dr. Minh-Son Dao

Dr. Minh-Son DAO exemplifies the qualities of an outstanding researcher through his sustained, interdisciplinary contributions to artificial intelligence, big data analytics, and smart IoT systems. With over 20 years of research leadership, a strong publication record (100+ peer-reviewed papers), and international collaboration across Europe and Asia, he has significantly influenced both theoretical advancements and real-world applications. His active role in Japan’s Society 5.0 vision and the development of the MMCRAI framework further underscore his commitment to data-driven societal innovation. Dr. DAO also demonstrates excellence in mentoring, editorial roles, and academic service, enriching the broader research ecosystem.

Education

Dr. Minh-Son DAO holds a Ph.D. in Information and Communications Technology from Trento University, Italy, where his research focused on similarity measures and shape matching using genetic algorithms. His doctoral dissertation introduced the Edge Potential Function (EPF), a novel contribution to shape-based image retrieval. Prior to that, he earned a Master’s degree in Computer Science from Vietnam National University, specializing in handwritten character recognition using Convolutional Neural Networks—an early demonstration of his interest in deep learning. His Bachelor’s degree, also in Computer Science from the University of HCM City, Vietnam, emphasized image processing and hypertext applications. These academic milestones laid a strong foundation in AI, machine learning, and multimedia processing, enabling him to merge theoretical knowledge with practical innovation throughout his career. His educational journey reflects a continuous pursuit of excellence across diverse computational and applied domains.

Experience

Dr. Minh-Son DAO brings over 20 years of extensive research and leadership experience across Asia and Europe. Currently, he serves as Research Manager and Senior Researcher at NICT Japan, spearheading national AI and Smart IoT initiatives. His prior roles include Deputy Director and Senior Assistant Professor at Universiti Teknologi Brunei, where he also founded the ELEDIA@UTB lab focused on smart farming and wireless technologies. He has held prestigious research roles at Trento University, Osaka University (as a JSPS Fellow), and GraphiTech Italy. He has supervised more than 40 postgraduate students, co-authored over 100 publications, and led multi-institutional projects in smart cities, multimedia analytics, and health informatics. His teaching portfolio spans creative multimedia, data science, and database systems. Known for building strong global research networks, Dr. DAO has established successful collaborations with institutions in Norway, Ireland, Vietnam, and Switzerland, playing a vital role in cross-disciplinary and cross-cultural scientific advancements.

Professional Development

Dr. Minh-Son DAO has consistently invested in professional development to enhance his academic and leadership capabilities. He completed the UTB Faculty Development Program and the Foundations of University Learning and Teaching at Universiti Teknologi Brunei, gaining proficiency in teaching pedagogy, assessment strategies, and flipped classroom techniques. He also holds Oracle certifications in SQL, PL/SQL, and web application development. His involvement as a guest editor for high-impact journals such as IEEE ACCESS, ACM TOMM, and Frontiers in Big Data, along with his participation as program committee member for numerous international conferences, highlights his role as a thought leader in multimedia, AI, and big data. Dr. DAO frequently chairs and organizes conferences and workshops, including ICMLSC, ICCRD, and MediaEval. His holistic development in research, teaching, industry consulting, and international collaboration exemplifies a well-rounded professional commitment to lifelong learning and knowledge dissemination in cutting-edge computing technologies.

Research Focus

Dr. Minh-Son DAO’s research primarily focuses on multidisciplinary applications of Artificial Intelligence, Big Data Analytics, and Smart IoT systems, aligning closely with the vision of a data-driven, intelligent society (Society 5.0). His most notable initiative, the Multimodal and Cross-modal AI Framework (MMCRAI), demonstrates his commitment to converting raw multimodal data into actionable insights across domains like environmental monitoring, health informatics, multimedia forensics, and smart cities. He has applied his research to real-world challenges such as air pollution prediction, disaster management, and cheapfake detection. His work spans from foundational AI techniques to practical societal applications, including the integration of sensor networks, robotics, and citizen-driven data platforms. Through collaborative international projects, he explores the intersections between cyber-physical-social systems, smart urban planning, and sustainable development. This focus enables him to address complex problems with scalable, intelligent solutions that impact public health, education, urban resilience, and digital media integrity.

Research Skills

Dr. Minh-Son DAO possesses a comprehensive suite of research skills that bridge theoretical and applied domains. He is proficient in machine learning, deep learning, multimedia retrieval, and big data analytics, often applying these in cross-modal and multimodal AI frameworks. His technical abilities include programming in C++, R, SQL, HTML/JavaScript, and Python, and working with AI tools such as TensorFlow and Keras. Dr. DAO’s expertise spans data fusion, smart sensor integration, pattern recognition, event detection, and AI-based forecasting models, enabling him to tackle large-scale and heterogeneous data sources. Additionally, he has extensive experience in research project management, proposal writing, international collaboration, and supervising graduate students. His editorial and peer-review roles in IEEE, Springer, and Elsevier journals further reflect his analytical and evaluative skill set. These capabilities have allowed him to lead multi-disciplinary teams and create impactful AI-driven solutions for urban management, environmental monitoring, and personalized health analytics.

Awards and Honors

Dr. Minh-Son DAO has received numerous national and international awards recognizing his research excellence and innovation. Notably, he won the Best Challenge Awards at ICMR 2023 and ACM MM 2022 for his groundbreaking work in cheap fake detection. He was honored with the Excellent Performance Award by Japan’s NICT in 2022, reflecting his leadership in national projects. Earlier, he earned first-place awards at prestigious competitions such as image CLEF 2018 and Media Eval 2017 for his contributions to multimedia understanding and disaster response. He received the Research Excellence Mid-Career Academic Award from University Technology Brunei in 2017. His early career was marked by competitive international fellowships, including the JSPS International Fellowship (Japan) and ERCIM Fellowship (Europe), and he was awarded Vietnam’s highest youth scientific honor, the Creative Youth Medal. These accolades affirm his sustained contributions to AI, data science, and societal innovation across multiple countries and disciplines.

Conclusion

Dr. Minh-Son DAO’s profile aligns exceptionally well with the criteria for a Best Researcher Award. His work bridges high-impact research, global collaboration, and societal benefit. His innovations in AI and multimodal systems, combined with his leadership in international research initiatives and dedication to mentorship, make him a deserving candidate. His recognition through prestigious awards and fellowships across continents further validates his global research excellence.

Publication Top Notes

1. Deep learning for mobile multimedia: A survey
  • Authors: K Ota, MS Dao, V Mezaris, FGBD Natale

  • Journal: ACM Transactions on Multimedia Computing, Communications, and Applications

  • Cited by: 188

  • Year: 2017

Summary:
This comprehensive survey explores how deep learning techniques have been adapted and optimized for mobile multimedia applications. It covers both theoretical advancements and practical implementation challenges. The paper also discusses energy efficiency and processing limitations of mobile devices. It has become a foundational reference in mobile multimedia research.

2. Exploring convolutional neural network architectures for EEG feature extraction
  • Authors: I Rakhmatulin, MS Dao, A Nassibi, D Mandic

  • Journal: Sensors, Vol. 24(3), Article 877

  • Cited by: 62

  • Year: 2024

Summary:
This paper investigates CNN-based methods for extracting features from EEG signals, a key step in brain-computer interface development. Multiple CNN architectures are compared for performance and accuracy. The study demonstrates significant improvement in signal interpretation. It contributes to the emerging field of AI-powered neuro technology.

3. Daily human activities recognition using heterogeneous sensors from smartphones
  • Authors: MS Dao, TA Nguyen-Gia, VC Mai

  • Journal: Procedia Computer Science, Vol. 111, pp. 323–328

  • Cited by: 34

  • Year: 2017

Summary:
The paper presents a method for recognizing daily human activities using various smartphone sensors. It highlights sensor fusion techniques to improve detection accuracy. The approach is lightweight and suitable for real-time implementation. It holds potential for fitness, health, and smart environment applications.

4. A real-time complex event discovery platform for cyber-physical-social systems
  • Authors: MS Dao, S Pongpaichet, L Jalali, K Kim, R Jain, K Zettsu

  • Conference: International Conference on Multimedia Retrieval

  • Cited by: 34

  • Year: 2014

Summary:
This work proposes a real-time platform for discovering complex events from integrated cyber, physical, and social sources. It focuses on fusing multi-modal data streams for event detection. The platform is designed for smart city and situational awareness applications. It bridges the gap between social sensing and real-time analytics.

5. Edge potential functions (EPF) and genetic algorithms (GA) for edge-based matching of visual objects
  • Authors: MS Dao, FGB De Natale, A Massa

  • Journal: IEEE Transactions on Multimedia, Vol. 9(1), pp. 120–135

  • Cited by: 33

  • Year: 2006

Summary:
This paper introduces edge potential functions (EPF) combined with genetic algorithms for visual object matching. It enhances robustness in noisy or occluded conditions. The method shows improvements in object recognition performance. It contributes foundational techniques for multimedia and computer vision systems.

Dr. Wen Zhang | Batteries deep learning | Best Researcher Award

Dr. Wen Zhang | Batteries deep learning | Best Researcher Award

Doctorate at Yeungnam University | South Korea

Professional Profile

Google Scholar

🎓 Educational Background

Wen Zhang (张雯) has pursued a diverse and enriching academic journey, demonstrating her passion for design and engineering. She earned her Bachelor’s degree in Industrial Design from Chengdu Neusoft University in China, graduating in June 2021 with a GPA of 2.73/4.0. Following this, Wen advanced her studies in Mechanical Engineering at Yeungnam University, South Korea, where she completed her Master’s degree in August 2024 with an impressive GPA of 4.05/4.5. She is now delving deeper into her field by pursuing a Doctoral degree in Mechanical Engineering at the same university, starting in September 2024.

💻 Skills and Expertise

Wen Zhang possesses a robust set of skills and expertise that align perfectly with her academic and professional pursuits.

🌐 Language Proficiency

As a native Mandarin speaker, Wen excels in communication in her mother tongue. Additionally, she has demonstrated fluency in English, underscored by her impressive TOEFL score of 92, which highlights her strong linguistic and cross-cultural communication abilities.

🛠️ Software Proficiency

Wen has mastered a wide array of software tools critical for design and engineering. Her expertise includes CAD (Computer-Aided Design) for technical and industrial design applications, Photoshop (PS) and Illustrator (AI) for advanced graphic design, CorelDRAW (CDR) for vector illustration, and After Effects (AE) for motion graphics and video editing. She is also skilled in Python programming, showcasing her versatility in computational tasks and problem-solving.

Publications Top Noted📝

Emerging two-dimensional (2D) MXene-based nanostructured materials: Synthesis strategies, properties, and applications as efficient pseudo-supercapacitors

Authors: Rui Wang, Won Young Jang, Wen Zhang, Ch Venkata Reddy, Raghava Reddy Kakarla, Changping Li, Vijai Kumar Gupta, Jaesool Shim, Tejraj M Aminabhavi

Journal: Chemical Engineering Journal

Year: 2023

Lithium-Ion Battery Life Prediction Using Deep Transfer Learning

Authors: Wen Zhang, RSB Pranav, Rui Wang, Cheonghwan Lee, Jie Zeng, Migyung Cho, Jaesool Shim

Journal: Batteries

Year: 2024

Mr. Andrews Tang | Deep Learning | Best Researcher Award

Mr. Andrews Tang | Deep Learning | Best Researcher Award

Andrews Tang at Kwame Nkrumah University of Science and Technology, Ghana

👨‍🎓 Profiles

Scopus

Google Scholar

Publications

Assessing blockchain and IoT technologies for agricultural food supply chains in Africa: A feasibility analysis

  • Authors: Andrews Tang, Eric Tutu Tchao, Andrew Selasi Agbemenu, Eliel Keelson, Griffith Selorm Klogo, Jerry John Kponyo
  • Journal: Heliyon
  • Year: 2024

An Open and Fully Decentralised Platform for Safe Food Traceability

  • Authors: Eric Tutu Tchao, Elton Modestus Gyabeng, Andrews Tang, Joseph Barnes Nana Benyin, Eliel Keelson, John Jerry Kponyo
  • Year: 2022

Prof. Ling Yang | Deep Learning | Women Researcher Award

Prof. Ling Yang | Deep Learning | Women Researcher Award

Professor at Kunming University of Science and Technology, China

👨‍🎓 Profiles

Scopus

Orcid

Publications

Enhancing Panax notoginseng Leaf Disease Classification with Inception-SSNet and Image Generation via Improved Diffusion Model

  • Authors: Wang, R., Zhang, X., Yang, Q., Liang, J., Yang, L.
  • Journal: Agronomy
  • Year: 2024

Deep learning implementation of image segmentation in agricultural applications: a comprehensive review

  • Authors: Lei, L., Yang, Q., Yang, L., Wang, R., Fu, C.
  • Journal: Artificial Intelligence Review
  • Year: 2024

Alternate micro-sprinkler irrigation and organic fertilization decreases root rot and promotes root growth of Panax notoginseng by improving soil environment and microbial structure in rhizosphere soil

  • Authors: Zang, Z., Yang, Q., Liang, J., Guo, J., Yang, L.
  • Journal: Industrial Crops and Products
  • Year: 2023

A BlendMask-VoVNetV2 method for quantifying fish school feeding behavior in industrial aquaculture

  • Authors: Yang, L., Chen, Y., Shen, T., Yu, H., Li, D.
  • Journal: Computers and Electronics in Agriculture
  • Year: 2023

An FSFS-Net Method for Occluded and Aggregated Fish Segmentation from Fish School Feeding Images

  • Authors: Yang, L., Chen, Y., Shen, T., Li, D.
  • Journal: Applied Sciences (Switzerland)
  • Year: 2023