Abu Hanzala | Deep Learning for Computer Vision | Research Excellence Award

Mr. Abu Hanzala | Deep Learning for Computer Vision | Research Excellence Award

Research Assistant | Daffodil International University | Bangladesh

Mr. Abu Hanzala Daffodil International University, Dhaka, BangladeshHanzala, Abu is an emerging researcher specializing in artificial intelligence–driven medical image analysis, deep learning, and explainable healthcare systems. The researcher’s scholarly work focuses on developing robust hybrid and ensemble learning frameworks that integrate convolutional neural networks (CNNs), vision transformers (ViTs), graph neural networks (GNNs), transfer learning, self-supervised learning, and attention mechanisms for disease detection and classification.A key research achievement includes the publication of a peer-reviewed article in Array (2025) titled “A Hybrid Approach for Cervical Cancer Detection: Combining D-CNN, Transfer Learning, and Ensemble Models”, which demonstrates improved diagnostic accuracy using advanced ensemble strategies. In addition, the researcher has several manuscripts under peer review in high-impact international journals including Scientific Reports Neuroscience, IEEE Transactions on Medical Imaging, ACM Transactions on Computing for Healthcare, Discover Applied Science and Computers & Education: Artificial Intelligence. These studies address a wide range of clinically significant problems such as cervical, lung, and colorectal cancer, Alzheimer’s disease pneumonia neuromuscular disorders peripheral nerve disease and cerebral cortex pathology.The researcher has authored 5 scholarly documents receiving 5 citations, and currently holds an h-index of 2, reflecting a growing academic impact within the medical AI research community. International visibility is further strengthened through a peer-reviewed IEEE conference paper and an invited oral presentation at the 15th International Conference on Computing Communication and Networking Technologies (ICCCNT 2024).Research collaborations span multidisciplinary teams involving computer scientists biomedical engineers and healthcare researchers. The societal impact of this work lies in advancing early disease detection reliable clinical decision support and explainable AI models contributing to scalable trustworthy and globally relevant healthcare technologies.

Profiles: Scopus | ResearchGate

Featured Publication

1. Hanzala, A., Akter, T., & Rahman, M. S. (2025). A hybrid approach for cervical cancer detection: Combining D-CNN, transfer learning, and ensemble models. Cited By : 3

Mr. Abu Hanzala research advances global healthcare innovation by integrating reliable, explainable artificial intelligence with medical imaging to enable early disease detection and data-driven clinical decision support. This work bridges scientific rigor and real-world applicability, contributing to scalable, trustworthy AI solutions with meaningful societal and clinical impact.

Xuewen Zhou | Machine Learning for Computer Vision | Young Scientist Award

Mr. Xuewen Zhou | Machine Learning for Computer Vision | Young Scientist Award

Master of Engineering | Hubei Normal University | China

Mr. Xuewen Zhou is a developing researcher in medical signal processing, medical image segmentation, and intelligent optimization algorithms, with growing contributions to the fields of biomedical engineering and computational intelligence. Affiliated with Hubei Normal University, his research focuses on designing advanced fractional-order and optimization-driven neural network models to enhance the analysis of physiological signals such as ECG and EEG as well as dermatological image segmentation. With 5 scientific publications, 4 citations, and an h-index of 1, Dr. Zhou is steadily establishing a strong academic presence.Dr. Zhou’s notable achievements include the publication of multiple SCI-indexed journal papers and active participation in leading international conferences. His recent SCI Q2 paper Adaptive Fractional Order Pulse Coupled Neural Networks with Multi-Scale Optimization for Skin Image Segmentation introduces an innovative segmentation framework integrating fractional order optimization with pulse coupled neural networks. The method employs a novel entropy–edge fitness function significantly improving accuracy in skin lesion delineation.Another key contribution is the SCI Q2 paper Improved Sparrow Search Based on Temporal Convolutional Network for ECG Classification where Dr. Zhou explores hybrid fractional order algorithms to optimize ECG recognition. His work rigorously analyzes the influence of positive and negative fractional orders on optimization stability offering valuable insights into next-generation fractional learning systems.In the EI indexed China Automation Congress Dr. Zhou proposed an ECG classification model combining spatial–channel attention networks with an improved RIME optimization algorithm enhancing hyperparameter tuning for complex biomedical patterns. He also contributed to neuromorphic computing through the ICNC  paper on FRMAdam iTransformer KAN presenting a fractional order momentum optimizer for EEG and ECG prediction.Dr. Zhou maintains strong collaborations with researchers including Jiejie Chen Ping Jiang Xinrui Zhang Zhiwei Xiao and Zhigang Zeng contributing to interdisciplinary advancements across medical AI fractional order theory and neural computation. His research demonstrates meaningful societal impact by improving early disease detection supporting intelligent diagnostic tools and advancing clinical decision making technologies on a global scale.

Profiles: Scopus | ORCID | ResearchGate

Featured Publications

1.Zhou, X., Chen, J., Jiang, P., Zhang, X., & Zeng, Z. (2026). Adaptive fractional-order pulse-coupled neural networks with multi-scale optimization for skin image segmentation. Biomedical Signal Processing and Control, (February 2026).

2.Zhou, X., Chen, J., Xiao, Z., Zhang, X., Jiang, P., & Zeng, Z. (2026). Improved sparrow search based on temporal convolutional network for ECG classification. Biomedical Signal Processing and Control, (February 2026).

3.Xiao, Z., Chen, J., Zhou, X., Wei, B., Jiang, P., & Zeng, Z. (2025). Monotonic convergence of adaptive Caputo fractional gradient descent for temporal convolutional networks. Neurocomputing, (December 2025).

4.Zhang, X., Chen, J., Zhou, X., & Jiang, P. (2024, December 13). FRMAdam-iTransformer KAN: A fractional order RMS momentum Adam optimized iTransformer with KAN for EEG and ECG prediction. In 2024 International Conference on Neuromorphic Computing (ICNC).

5.Zhou, X., Chen, J., Jiang, P., & Zhang, X. (2024, November 1). Electrocardiogram classification based on spatial-channel networks and optimization algorithms. In 2024 China Automation Congress (CAC).

Dr. Xuewen Zhou’s work advances science and society by developing fractional-order neural systems that significantly enhance the accuracy of biomedical signal and image analysis. His innovations support earlier disease detection, improved diagnostic reliability, and broader global access to intelligent healthcare technologies.

Şifa Gül Demiryürek | Generative Models for Computer Vision | Outstanding Scientist Award

Dr. Şifa Gül Demiryürek | Generative Models for Computer Vision | Outstanding Scientist Award

Lecturer | Aksaray University | Turkey

Dr. Şifa Gül Demiryürek is a researcher specializing in acoustics, dynamics, vibration control, nonlinear structures, and metamaterials, with a growing body of work that bridges fundamental mechanics and applied engineering. Her research focuses on low-frequency broadband vibration damping, nonlinear passive particle dampers, and metamaterial-inspired structures aimed at improving stability, efficiency, and durability in modern mechanical systems.She has authored 11 scientific documents, accumulating 19 citations with an h-index of 3, reflecting the emerging impact of her contributions. Her early work includes the experimental study of thermal-mixing phenomena in coaxial jets published in the Journal of Thermophysics and Heat Transfer demonstrating her multidisciplinary foundation in fluid–thermal interactions. Transitioning toward structural dynamics  her doctoral research at the University of Sheffield advanced the understanding of periodically arranged nonlinear particle dampers under low-amplitude excitation providing new insights into damping mechanisms critical for lightweight and high-performance structures.Dr. Demiryürek has collaborated with notable researchers such as A. Krynkin and J. Rongong contributing to recognized venues including DAGA, ACOUSTICS Proceedings, and the Institute of Acoustics. Her studies on metamaterial-based dampers and locally resonating structures highlight innovative strategies for vibration mitigation particularly in the low-frequency regime where traditional dampers are less effective. Her works further expand this direction with investigations on dynamic behavior of thermoplastics and material resonance considerations for wind turbine towers addressing contemporary engineering challenges related to sustainability and structural reliability.In addition to research publications she has contributed educational materials including Introduction to Metamaterials  supporting broader knowledge dissemination in emerging engineering domains. Her collaborations in applied mechanics such as the numerical evaluation of electric motorcycle chassis demonstrate a commitment to integrating theoretical advances into practical real-world applications.Through her focused work at the intersection of vibration engineering and metamaterial science Şifa Gül Demiryürek is contributing to next-generation solutions for safer quieter and more efficient mechanical systems with potential societal impact across manufacturing transportation renewable energy and advanced materials engineering.

Profiles: Googlescholar | Scopus | ORCID

Featured Publications

1.Demiryürek, S. G., Kok, B., Varol, Y., Ayhan, H., & Oztop, H. F. (2018). Experimental investigation of thermal-mixing phenomena of a coaxial jet with cylindrical obstacles. Journal of Thermophysics and Heat Transfer, 32(2), 273–283. Cited By: 5

2. Demiryürek, S. G. (2022). Periodically arranged nonlinear passive particle dampers under low-amplitude excitation (Doctoral research, University of Sheffield). Cited By: 3

3. Demiryürek, S. G., & Krynkin, A. (2021). Low-frequency broadband vibration damping using the nonlinear damper with metamaterial properties. In DAGA 2021 Conference Proceedings (pp. 94–96). Cited By: 3

4.Demiryürek, S. G., Krynkin, A., & Rongong, J. (2020). Modelling of nonlinear dampers under low-amplitude vibration. In ACOUSTICS 2020 Proceedings. Cited By: 3

5.Demiryürek, S. G., Krynkin, A., & Rongong, J. (2019). Non-linear metamaterial structures: Array of particle dampers. Universitätsbibliothek der RWTH Aachen. Cited By: 3

Dr. Şifa Gül Demiryürek’s research advances next-generation vibration damping and metamaterial technologies, enabling safer, quieter, and more efficient mechanical systems across industries. Her contributions support innovation in sustainable engineering from wind energy structures to lightweight transportation strengthening global efforts toward resilient, high-performance designs.